A spectral mapping theorem for perturbed Ornstein–Uhlenbeck operators on L2(Rd)

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on spectral mapping theorem

This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

متن کامل

Remarks on the inverse spectral theory for singularly perturbed operators

Let A be an unbounded from above self-adjoint operator in a separable Hilbert space H and EA(·) its spectral measure. We discuss the inverse spectral problem for singular perturbations à of A (à and A coincide on a dense set in H). We show that for any a ∈ R there exists a singular perturbation à of A such that à and A coincide in the subspace EA((−∞, a))H and simultaneously à has an additional...

متن کامل

Spectral Theorem for Self-adjoint Linear Operators

Let V be a finite-dimensional vector space, either real or complex, and equipped with an inner product 〈· , ·〉. Let A : V → V be a linear operator. Recall that the adjoint of A is the linear operator A : V → V characterized by 〈Av, w〉 = 〈v, Aw〉 ∀v, w ∈ V (0.1) A is called self-adjoint (or Hermitian) when A = A. Spectral Theorem. If A is self-adjoint then there is an orthonormal basis (o.n.b.) o...

متن کامل

Spectral Theorem for Normal Operators: Applications

In these notes, we present a number of interesting and diverse applications of the Spectral Theorem for Normal Operators. These include a Spectral Mapping Theorem for Normals Operators, a Spectral Characterization of Algebraic Operators, von Neumann’s Mean Ergodic Theorem, Pathconnectivity of the Group of Invertible Operators, and some Polynomial Approximation Results for Operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2015

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2015.03.001